Visualization at the NCCS

NCCS USERS MEETING

Sean Ahern, ORNL Mar 28, 2007

Outline

Visualization efforts and team

- Hardware resources
 - Visualization cluster
 - EVEREST display
- Visualization tools
- Data access issues and solutions

Many Coordinated Efforts

The visualization effort within the NCCS strives to deliver visual data analysis tools and capabilities to our customers. It includes many sub-efforts to successful assist their scientific mission:

- Support visualization tools
- Convert data
- Perform statistical analyses
- Produce publication images
- Produce movies
- Highlight science successes to visitors

- Explore new data exploration techniques
- Write custom modules
- Write custom visualization tools
- Parallel analysis support
- Large display support

Visualization Team

Hawk Visualization Cluster

- Dedicated visualization cluster
- 58 nodes
- Dual opterons, 1.6 MHz
- 116 gigs of memory
- Quadrics Elan3 and GigE interconnect
- NVIDIA 5900 and NVIDIA QuadroFX 3000G GPUs

- High-speed connection to 10 GigE infrastructure
- Pending Lustre integration
- 14 nodes "dedicated" to EVEREST
- Batch system managed by SLURM
- Firewall exception for hawk.ccs.ornl.gov, providing easy remote access to parallel vis resource

EVEREST

(6)

Science Communication

- We give 400-500 tours a year to external visitors
- Generally lasts 20-30 minutes
- We highlight significant science results
 - combustion
 - supernova simulations
 - climate
 - biochemistry
 - fusion
 - _ ...

 We would LOVE to include your work and be your mouthpiece

EVEREST

- Large format powerwall
- 30' x 8' in size
- 27 projectors
- 1280 x 1024 each: ~35 million pixels
- Able to run interactive visualization tools

Network Infrastructure

(6)

Deployed Major "Turnkey" tools

- VisIt
- EnSight
- Paraview
- VMD
- AVS/Express

- What I mean by "turnkey" is:
 - Rich set of features for visualization and analysis
 - No programming is required to access main features
 - Flexible in data input capabilities
 - The first three will scale to extremely large data

Getting access

• Most tools accessible through "modules":

```
% module avail
                    ferret/5.81
AVS-Express/7.0
                                         netcdf/3.6.1
AVS-Express+PST/7.0 firefox/1.5
                                         paraview/2.4-mpich
DMX-chromium
                    freeglut/2.4.0
                                         povray/3.5.0c
DefApps
                    qlut/3.6
                                         povray/3.6
                    qlut/3.7
                                         povray/3.6.1
MiscApps
R/2.3.0
                                         scirun/3.0.0
                    qnuplot/4.0
                    hdf5/1.6.5
blockbuster
                                         toolkit/1.0
cq/1.4.0-4
                    id1/6.2
                                         toolkit/1.1
chromium/1.2-32
                    id1/6.3(default)
                                         valgrind/3.1.1
chromium/1.7-32
                    java/jre-1.5.0.06
                                         valgrind/3.2.3
ensight/8.0
                    nc1/4.2.0.a33
                                         visit
ensight/8.2
                    netcdf/3.6.0
```

- Some documentation at
- Contact us many more capabilities possible

File systems on hawk

- Your home directory: /spin/home/\$USER
 - Insignificant space (500 MB)
- Scratch space: /scr2ta
 - Small space: 1.5 TB
 - Pretty full, lot of contention
- Dedicated NFS file system: /nfs/data/\$USER
 - Moderate space: 7.7 TB
 - Single server, so easy to saturate in parallel
- (Coming soon) Lustre: /lustre/spider
 - Good amount of space (80 TB)
 - Shared with Jaguar/Phoenix
 - Good parallel aggregate bandwidth

"Locality" Issues

- Data and customer are often not located together.
- Data is getting much larger.
- Data movement becoming increasingly painful.

One solution: Decoupling of data processing from rendering/display

In the old days...

Now: Remote Customers...

Your Site NCCS

...with BIG data!

Solution: Separate data processing

Remote Visualization

VisIt, Paraview, EnSight provide client/server access

to large data visualization

Geometry across the network

Imagery across the network

- Issues/Concerns
 - Latency
 - Socket initiation issues

Dataset sizes change use cases

Data size categories

• Small:

 Data is small enough to easily move anywhere. Analysis/vis is generally done on local workstations

Medium:

 Data won't fit on local workstations.
 Have to process on "fat" nodes or commodity clusters

Moderately painful to move.

Large:

- Data won't fit anywhere but the largest computational systems.
- Functionally impossible to move.

Medium-sized data

- Commodity clusters are an inexpensive solution
- Large memory allows scalar/legacy exploration
 - AVS, R, Tecplot, SCIRun, etc.
- Currently served by the hawk cluster
- Now drafting RFP for new "fat node" cluster as a replacement.

Largest data

 Working to move largest vis/analysis tools to Cray XT4 architecture

- Cray has ported parallel Visit to the XT4
 - OS changes not yet deployed to ORNL
- Vislt "lessons learned" will allow port of ParaView to XT4.
- Port EnSight Server-of-servers to XT4

Visualization tutorial this afternoon

- A "how-to" exploration of several visualization and analysis tools:
 - NetCDF exploration
 - VisIt visualization system
 - R statistical analysis
- Follow along at
 - http://nccs.gov/news/workshops/fy07usersmeeting/ visualization.html
- May wish to download the climate dataset found there
- May wish to download VisIt:
 - http://www.llnl.gov/visit/executables.html

